Homework 2

Due January 25th on paper at the beginning of class. Justify your answers. Please let me know if you have a question or find a mistake. There are some hints on the second page.

1. Consider the traffic equation $u_{t}+(1-2 u) u_{x}=0$ with intial condition $u(0, x)=h(x), h(x)=$ $\max (0,1-a|x|)$, where $a>0$.
(a) Find the characteristics $x(t)$ and sketch them. Use this to find T in terms of a, as large as possible, such that the solution $u(t, x)$ exists for all x and for $0 \leq t<T$.
(b) Write a formula for the solution $u(t, x)$ for these values of t in the form

$$
u(t, x)= \begin{cases}h(\cdots), & x \geq-t \\ h(\cdots), & x \leq-t\end{cases}
$$

where the \cdots are filled in with an explicit function of a, x and t. Sketch the graph of $u(t, x)$ for a small positive value of t.
2. Borthwick Exercises 3.6 and 3.7.

Hints:
1(a). Follow Example 3.9. The sketch looks like Figure 3.7 but shifted.

1(b). The \cdots are both fractions where the numerator is $x+t$ and the denominator is a simple function of a and t. The graph of $u(t, x)$ is obtained from $h(x)$ by stretching the graph horizontally on one side of $x=0$, squeezing it horizontally on the other side, and then shifting.
3.6. This is also similar to Example 3.9.

